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A Reversal Argument for Storage
Models Defined on Semi-Markov Processes

by

Eric S. Tollar

Abstract

For many storage models defined on some semi-Markov process X(t), the
asymptotic distribution of the imbedded discrete time process can often be
determined by exploitirng the properties of the dual of the underlying
Markov chain Xn’ which effectively reverses the process. If this is the
case, a technique is given which under certain regularity conditions shows
the asymptotic distribution of the entire .cntinucus time process can be
ootained, and is equal to an altered version of the 'reversed" discrete
time process. It is shown this method not only can be apvhlied to models
where the asymptotic distril:ution was previously unknown, but can also

improve upon characterizing many of the results for models in which the

asymptotic behavior is obtained by a renewal argument.
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1. INTRODUCTICN

In storage models, the concept of using an underlying Markov renewal
process to allow for some dependency of structure, as well as continuity
of time, has scen widespread usagce. In such models, the investigation of
the limit behavior of the contents in storage as time tends to infinity
has always been one of the more important aspects of the model, and there
nave been a wide variety of techniques used in the literature to determine
the limit behavior.

When the structure is such that the amount in storage, when coupled
with the state of the underlying semi-Markov process, is itself a semi-
llarkov process on some arbitrary state space, the general theory of semi-
Markov processes on arbitrary state spaces (for example, see Cinlar (1969),
Athreya, McDonald and Ney (1978a, 1978b), Athreyva and Ney (1978), Kesten
(1974), and Nummelin (1978)) can be exploited. This technique was success-
fully explcited by Puri and Tollar (1985) to determine the limit behavior
of a popular storage model.

Another popular technique is to ''reverse'' the process by looking at
the dual Markov renewal process (for a summary of the full power of the
dual process, see Kemeny, Snell and Knapp (1976)). While this method has
proven itself useful in the limit behavicr in those cases wherce the con-
tents in storage require some normalization (see, for example, Puri and
Woolford (1981)), it has failed in those cases wherc no normalization

is required.
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In this paper, under certain assumptions on thc definition of the

'

1
storage model, we present a technique which allows one to ‘'reverse’

- s
4.

¥

. the continuous time process to obtain results in those cases where no
2 normalization is required. Because of the assumptions imposed on the
- model, these results can also be considered as an extension of the
theory of semi-Markov processes on arbitrary state spaces (although

there is admittedly more structure on our state space than the pre-

(AN

viously cited authors prefer to allow). Eﬁ

Let J Le a subset of the integers, and {Xn, n=0,1, 2, ...} be
a stationary, irreducible, aperiodic, positive recurrert Markov chain i
. with transition matrix P= (pij) for i, jeJ, and with stationary B

neasure 7. We then definec times 0 ETO sT1 €T,... such that

. {(Xn, Tn), n=0, 1, 2, ...} is a Markov renewal process with semi-

Markov matrix A(t) = Liij(r)), vhere for i, jeJ, t20,

g P(X =3, T =T | <tiTo, Xou Ty X ooes

(ree Cinlar (1°75) for details). For all icJ, define the expected -

sojourn time in state i by

m.= 3 [ tda,. (),
1 jeJ 0 1} -:

and decfine the average sojourn time of the process by

B= 1 =.m. (1.1)

“ .
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For all t2> 0, define the number of jumps by time t by

H(t) =sup {n: Tﬂ st}.

~

We define another Markov renewal process {(xn, Tn)}, independent
of {(Xn’ Tn)}, with semi-HMarkov matrix A(t) = (Aij(tn defined for each

i, J€J by

~

_ 1
Aij (t) = nj'nl Aji(t) s

e

and let )(0 have initial distribution 7.

3

. Definition. {(Xn, Tn)} as defined above is called the dual Markov

] R
E renewal process of {(Xn, Tn)}, and {Xn} is called the dual Markov chain.
: Finally, for each ie J, we¢ associate a sequence of i.i.d. random

!

>

variables '{”n(i), n=0, 1, 2, ...} on =sor~ artitrary state snace, where

(e nad

{Un(1)} is independent of {(Xn, Tn)} and {(Xn, Tn)}, and nf all

{Un(j)} for j #i. We then define the contents in storage at jump n

recursively for some function f by

2, (0 =£(2,_(x), U_(X)), (1.2)
where Zo(x) z X.
Fer simplicity, we will assume the function f(-) is real-valued.
To define the arount in storage at time t, we let

2(t) = zN(t)(Zﬂ)'

T

If we definc a sequence of furctions recursively by

(n,.. (n-1) .
£ 3Yys Yo «ens = ; cey ¥
(X:yy» ¥, yy) = f(f (x3y s ¥y P Vo) V)
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we can represent Zn(x) by

= ¢ (.
2o = £ (x5 Uy (X)), U, 065), -ee, UL(XOD)

Define in(x) by

5 M .
Zn(x)-f (x; ln _I(K

For convenience, let

2 i Ly 1 =M 06 UG, G, UG ) (13)

Nete fren Kemeny.Snell and Knapp (1)76) that if X, has initial dis-

tribution 7, Zn(x) an(x), for all =.

e will assume throughout the »vaper the follcewing condition on

the storage model of (1.2): for any arbitrary distribution of X for

0’

each B> 0, and cich € >0, there is an N where for all n> N,

P(sup | Z (0)-2Z (x)|>€)<e (1.4)
Ixlse ™ n

As such, the initial amount of the contents in storace is vniformly
forgotten as n tends to infinity.

The importance of the condition and the uscefulness of the revers-
ibility in discrcte time n can be seen from the followiny theorem.
This theorcn is stated without proof, for even though it is not explic-
itly stated in the literature, the tcechniques required to prove it are

well established (see for example Puri ard Woolford (1981)).
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: THEOREM 1.1. 1€ condition (1.4) is satisfied, then the K
3 lim P(X_=1i. Z (x) <y) cxists for all x. and for all initial distributions ¥

n->oo n n - - LS

QE‘XO’ if an only if Aig P(XO= i, Zn(O) <y) cxists, in which case for all

~

continuity points y of %ig P(X0= i, %n (M <y), for all x, and all ieJ

: = 3 =11 ¥ =3 7
%&2 P(Xn i, Zn(x) <y) %12 PO =1, Zn(O) <v).

h__ oo

- Therefere, in discrete time, one can either examine the orieinal process

or the dual process, whichever is more convenient. L

It is easy to sce that {Xn, Zn(ZO), Tn} is itself a !'arkov renewal
process. llowever, the state space cf {Xn, Zn(zn)) nced not be denumerable. -
Therefore, even if it i< nossihle to estrhlish that {Xn. Zn} converses in
distribution as n tends to infinity, it neced not fellow that {X(t), Z(t)} -
converges in distribution. The substantial body c¢f work on semi-‘farkov
processes on arhitrary state snaces cited previously is of little help
in proving what annears should be truec: as long as 8 <~ in (1.1), then
(Xn, Zn) convercing should imply {X(t), Z(t)} conversces.

It will be shovn in section 2 that under certain conditions a re-
versibility argument can be applied to “ctermine the conversence in
distribution as time tends to infinity. “ection 3 is then devoted to

arplications of the results in secticn 2 to sorme examnles of storage

mndels. ;i
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2. THE REVERSIBILITY ARGUMENT

If 8 of (1.1) is finite, in addition to and independent of all the
random variables defined in section 1, let {X;, n=0,1, ...} be a

Markov chain with state space J, transition probability for i, je! of

* p * . * A
= = = =T, 7 ™
Py =P =31 X =1 =757 ™y

*

and initial distribution of XO given by

P(X(;: i)y=g lr.m,.
We also define Z;(x) by

* _ (n) . * w* _ (n) R * -* *
Zn(x)-f (x; Un_l(Xn_l),...,UO(XO))-g (x; xn—l’ Xn-Z’ ceey XO)

*
as defined in (1.3). The relation between Zn(x) and Zn(x) is given in

the theorem below.

THEOREM 2.1. For each > 0 and each £ >0, there is an * where for all

n>N

2

k4 *
POsup 12 (0) -7 () b €) <.

- . . . . . * *
In addition, if (Xn, Zn(O)) converges in dJdistribution, then (Y , Zn(O))
2 qacition, 12 n

converges in distribution.

PROOF. Let X0 have initial distribution -, ard let X be a finite

subset of J, where both

.....




AT

&

- v -
2

«

I 7,>1-¢ and J 87! mm> 1o
ieK ieK

LA S

From (1.4), for B>0, € >0, we can select an N where for n>N,

P(sup |z (0)-Z (x)] >€) <e min(n,).
I xi<B ieX

Then P( suplZ (O)-Z (x}]>e) = ZP( sup lZ (O)-Z (x)l>elX =1i)B lﬂ.m
Ixl<B ieJ |xlsB !

= TPCsup 12 (0)-2 00l >el Xy =1)8 nym,
1€J | x| R 11

- ):Jnl p(l sup 2 (0) -z ()l e, *O=i)a’1nim.. (2.1)
ie xls?

From ¥emeny, Snell and Knapv (1976), we have for ie K, -I:

PN

P(suPIZ(m-Z(K\IN-:, Xn=i)
'v'<R ::

=P supIZ (0)—2 x)t >¢e, Xn-1)<s mln(w ). >
Ix1<B ie ¥ &

Thus from (2.1) and thc definition of X it follows that

P( suplz (n)-z (x) | >e) <} nl e min(n, )-8 ln.mi+e<2€. _
Ixj<R ic¥ ie ¥ ! -

. $" -'J'J. l"'l
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Also, again letting )(O have distribution 7, we have from theorem 1.1

that (Xn’ Z,,(0)) converging in distribution implies for all continuity

points of y,

-~

rl‘_lwrg P(XO=1, Zn(O) <y) =P(X0= i, Z <y), for some Z.

Therefore,

lim P(X" =i, 2 (0) <y) = lim P(Z" = 1))
Am P(X =1, z,(0) <y) = 1im P(Z_(0) <y Xp=1)8 mm

. z ~ -1 - o
=111-]>or§ P(z,(0) <yl Kg=1)f mme =P (Ny=1. Z<5y)8 "m, .

* *
As such, we have shown thkat (XO, Zn(O)) converges in distribution. [}

The fundamental lemma of this paper makes clcar the relation

*
hetween {Xn} and the benavior of the continuous time semi-ifarkov process.

LEMIA 2,2, If B <=, then for any k>0

lim P(X,,, “d,, X =i, ..., X, =1,) ‘
toos Mty 0" m(e) -1 71 Mty - % Tk
L * * -'
SPNg =1y, Xy =1y, » = iy) L

R I P S I A S A S AT SO R VI PSRN
- —_— Bl S .
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PRNOOF. For a particular k, let us define a new Markov rene ral process

(v, Tn),r1=0, 1, ...} with state space

n
. . . k+1
K={(,, i,, ..., i,)eJ P s *Pi s --- Do . >Q}
0 1 k iy i, 1k-11k
by
POG= Uy 3y oves 300 T =T StIY = (ig, i, ooy 1))
k
=A, . ()T IG,=5, ).
Wi T 5 Tt

As is apparent, {(Yn’ Tn)} is merely the process {(Xn, Tn)} with memory

of the previous k states it has visited. Therefore, for N(t) >k,

P(XN(t)~k=1k, XN(t)-k#l=lk-1’ e XN(t)=10)

=POygy = Gpoiy s oes 1))

Also, {Yn} must be aperiodic and irreducible, since {Xn} is. Finally,

letting

*

m,. .
(Gge 3

. T, D, .
1’ ) Jadady

we have that 2 ,
T .. . .
(iol il’ o0 ey ik)eK (10l 11) “e ey lk)

. P(Yn==(Jn, e )k) lYn -1 =(10’ 1, e IP))

LRI
.

=
r
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L

As such, we have from Karlin and Taylor (1975) that Yn is positive re- =
*

current with stationary measure 7 . Therefore, from Cinlar (1975) . "
> h

it follows that ;;
im P(X =1 = 3 ' - it

Un POy = e Xoy -ksn " i v o Y T H0) 5
A VS U SRR ERE UE TOE i

S S 1’0 o s

. . . y i i U S 1 -

(1k, L qr oeee 10)5 o'k kk-1 1’0 70 o

;2]

=6-17.!u . P A _
k-1 *1%0 Yo o

The proof is completed once it is observed that ;ﬁ;

P(X: = i =i )=80 noLT o

Xa=1,, ..., X, =1,) = .. e Mo T , i

0 0 k "k i, 44 1,i) 1, :;

~

Thus ve see that in continucus tire, the Markov renewal process can in o,
a sensc be 'reversed" to look like the dual Ilarkov chain with a different R
initial distribution. T
From this lemma, we can establish the main theorem of this paper. =
TUCOREN 2.3, If B<m, if (7, Z_(2,)) %> (X, 2), and if for alle >0, L
L Z;f-.

there is a B where for all k> ¢ lim P(l1Z [>B) <¢, then o
e e T e £o300 v(t) -k 5

* *
lim P(X(t) =1, Z(t) ﬁy)==%i£ P(X0 =i, Zn(ﬂ) <y), for all continuity points y.

>
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* * * *
PROOF, Let (XO, Zn(O)) have limiting distribution (XO, Z ), and let (i, y) be

a continuity point. For any e€> 0, select a T> 0 where lim P(|Z,
t>o '

(t)‘k|>p)<e’

for all k. We know from theorem 2.1 there is an ¥ where for all n >\,

p * Lk ' .
( :S:rsslzn()() Zn(O)I >e)<e (2.2)

Select a k> M where

* B * * X *
IP(X0=1, Zk(O) <y +¢g) -P(X0=1, 7 ¢ v+e)| <e. (2.3)

From the i.i.d. nature cof {Un(i)}, we can see that for g(n)(x; il,..., in)

as defined in (1.3) that for all k

gg(k)(zn

LON (1) -k Ty -ks 100 Xorgy)-

Therefore

(k) z.,

Py T Ingey =Py =10 8 @ -1 o ke Yy) )

<P{X Kz

\'(t)=1, g ‘J(t) _ky x::(t) _k+1,.--, X"(t)) SY)IZ‘,(t) _‘\I SB,

(k) ey - (k) g.
lilfgglg (6 Xy cxagre X)) =20 (08 Xy e Xyl sed

+P(|ZN(t) ~P| >

) AP ) . .
P( sup lg" " (x; 'X\‘(t) Ckelte X‘Y(t))-g 0, X"‘(t) Skttt '\Tl(t))'> £).

fx[<P

o
DI |
.
-._‘d
T
~
o d
—-—
.‘\
N

P .- . A S T NEIRN - . . . NN
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Tt is tlerefor~ clenr t'at

E A RIS

. . IS cy+
P(xN(t) =i, ZN(t) <y) sP(X:.!(t) =i, g (0, X*?(t) SKkae1tt? X"(t)) <y + ¢) (2.4)

I
+P(|ZN(t) _k|> ™)
k). LS PR X
+P(|:(liprlg (x; X‘!(t) ka1t xN(t)) g ’(0; )\”(t) Ckaptcttr XPJ(t))I> £). S
E.
' G. e nad Y >
We first note that lim P(lzh!(t) —k‘>m <E.
toro
: Also, since the possible values of XN('C) Ckelrt XN(t) are countable, and
for all 1, iy, 1keJ,
P(X =i g(k)(O‘X' . X ) <y +e X =i, .0 X =i )
N(t) ! CON(Y) k17777 Ty T ey -k+1 71 N(t) Tk
is a constant bounded by 1, we have N
lim P(X,,.. =i, g™ (0; x veers Xepll) SV 4€)
oo N(t) N(t) -k+1 ey’ - -
_ *_‘ (k) . * * . :
-P(Xo—l,g (0; Xk_l....,XO) <y +¢e). :_:
)
From a similar argument we have from (2.2) that B
. k) (k) .
lim P( sup Ig( (x; X, veoos Xosiy) - (e yeonsy X ) I> €
: o o N(E) -k + 1 vigy) ©°F v(t) -k +1 v (t) )
<e.
M
r‘:"
& RN RN, R R R I I A N IS,
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Falr

¢ - 13 -
: Thus, combining (2.3) and (2.4) we have that
: —_— , .
4 1 = < < = z < + .
lim P( N(t) i, ZN(t) y) P(X0 i, Z y +e) + 2¢
R e
By similar arguments it can be cstablished tha*
i POX * ) P(
=i, Z <y-e€)-2e <lir P(X,, =i, Z,, <y).
’ Pt 13 > 13 h
- 0 t‘"") (t) ‘t')
a1
al
. which completes the nroof. [
Of course, thce crncinl condition in the application of thearem 2.3
to establish tnat if [ <« then (Xn, Zn) convargina implies ((t), 7(t))
converges i< the condition that for all k
: lim P(IZ,, |>1)<¢g,
. t+o (t) -k
) which implies that a bound can be selected that will apply for any k.
We now cstablish that for semi-Markov “vrocess @ en on oarlitrory ctove 2
.'._q
srace with a regeneration peint with finite expected return time, that }i
such uniform ' ~un'le exivt, -
. ]
- let {Yn’ Tn} be a well-detfined !larkov renewal process on some nermed i
; state space S (for a mere detailed definition, sce Cinlar (1969)). 5}
> v}‘
rs usual, we define Y(t) =Y"t) and for any y ¢ &, random variable
B ¥
- Z «nd event A, we define
3 T (7)) =E =y A) =P (ALY, =y).
: R (2) =E(ZIYg=y), and P (A) = P(AlY, =y)
: 3
o :._1
. o
o

R &




We then assume that there exists a point x

0

P (8, (Y, = %)) > 0, (2.5)

and for M=inf {n: Y =x,} and T=T_,

EXD(N) <o, (2.6)

E(T) <w. (2.7)
X0

As is shown in ginlar (1975), such regeneration points make the
behavior of semi-bMarkov processes quite tractable. In particular, we

have thc following theoren.

THEOREM 2.4, Let (Yn, Tn) be a Markov reneral process on a normed space

€ S where for all yeS,

S where there exists an Xg € S satisfying (2.5), (2.6) and (2.7). Then

for all €> 0, there is a r> 0 where for all k> 0

1im P(11Y,, 1> 1) <e.
- M(t) -k
PROO}. AS 1s shown in Orey (1971). we have that Py(Yq =x, i.0.) =

for almost all y, and there exists a stationary probability mensurc

u(+) where for all A« S,

p(/\)=fsu(dx)P(Yl£A|Yn=x). (2.8)

1
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Therefore, for almost all yeS,

lim P_(l1Y, H>B)=1im P_ (1Y, Hi> Ry,
. tao Y (t) -k tao X0 (t) -k .
and since lir N(t) =« a.s., we need only consider ﬁ
tr o

i:x: pxo(l Wy -1 1> B V() 2K).

Clearly Xy is a regeneration point, and therefore

PXO(’iyw(t)' (> s () 2k) =pxn('lyn(t) Kl () zk, T> ) }j

P, Mgy -kl 1270 @ 2k 0 508 =7 (D) <)
. [gpxo(l Wygey -1 Bs 5(8) 2k, i(e) - i(s) 2 KIT = s)dPxo(T <s).  (2.9)

Since T is a time of regeneration, we have, .

t e ar T A o < <
IOPXO(HYN(I')- B T 2k, () - (s) 2 K) T —s)dPXO(T ce)

_rt . YT : <
= IOPXO(IIY"!(t - s) - (>R (- s) zk)dPXO(T <s).

Thercfore we have that (2.9) is a renewal cquation, and if it can

be shown that
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Pxo(lfY‘.\,(t) By N(t) 2k, T> t)
+Px0(| lY,(t) -k”’ B, N(t) zk. 0 €N(t) -N(T) <k) (2.10)

is directly Riemann integrable, then the hasic renewal theorem will

yield lim er(; | YN(t) _ k“ >0, N{(t) 2k).

Lo 0

Clearl'y, the first tevm of (2.10) is directly Riemann integrable, since

Pxn(“YN(t) _kH> 5, N{t) 2k, T> t) <_P'\‘D(T) t)

vhich is nonincreasing with j“;P (T> t)dt = Ex T<w,
X 0

Also PXO(HYNﬁ) St 3 N(E) 2k, 0 £it) ST <)

<P (T> t) +P_ CI(t) - ¥(T) <k, T <t)
%0 X0 '

=1-P. (N(t) - (T) 2k, T <t).
Xn

Bceause Px i) (7)) 2k, T <t) is nencdoercazsin . 1f we can show
0

j:l:[l’x (T> t) + Px Gi(t) -N(T) <k, T <t)idt <o, we will have established
’ 4] Q
the directly Kicmann intepgrability of the sccoald term of (2.10). First

note that I;Px (T> )dt <=,
0

A B A A

PEVY VYR PRV RV YR VIR VPV s vl S VI i W TR sl Sy i VLI,




i \ - . .
IOPXO( I(t) -N(T) <k, T st)dt

@ ot "
=jof0px0( (t-s) <k)dPxO(T £s)dt

= IZ(IZPXO(N(t _s) <k)dt)der)(T <s)

-

=[P, (T, > 1) XC(T soy=T )T‘;.

Since E_ T<=, it clearly follows that E_ T, <kE_ T <«, which establishes
Xy X, k X4
the dircect Riemann integrability.

herefore, from the basic renewal theorem, we have that

1lim P_ (11 Y 1> B)
= B ’ -1 " g » 28
= (Lhnr) Ljopxouwnm B 2K, T n)dt
1> p, N(t) 2k, 0SSNt} - N(T) <k)dt]. (2.11)

+ jopxo(l IYN(t) o

T ¢stablish the uniformity of the bound B, let us define

Y= sup (Y, L 10D
(< t<T Y}‘(‘)
/

*
Since Ex T<w, and Y <o a.s., we have from the dominated convergence
0

theorem that lim fmp (Y“> R, 7> tdde =0,
Pac 0 X, ’

"0" -4‘ . ‘.' \\ - . - . . - ~ .
P B R A L S P
Py NV IR IV W YA TR Y DA L. R N
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Therefore, for all e€> 0, therc is a 3> 0 where for all k> 0,

P B (@) 2k, T tyde <fop "> B, T> t)dt <e.  (2.12)

[P (1Y
J yes
0 X t) 0

Also,

ARG - e g ar i as S, e ol gl gl Rk b 1 0 SO RN
' .

.

.

.

.

.

E

.

.

s

fZPxO(HY;.- () -k 17 B N{T) 2K, 0 9t (e) - n(T) <k)dt
<fop O > B, N (t) 2k, " (t) -V (T) <k, T <t)dt
*0

=f°g fgpxo(y*> B, » (t) 2k, N(t) - (3) <k|T= s)dPxO(T <s)dt. (2.13)

From(2.13) it follows that

f’gpxo(! Wycey <3122 NI 2, 0.23(6) - N(T) <k)dt

k-1 .
ST R B () k-, Ne) - (s) = ITE P (1) 2
. X X -
=0 70 n
o . k-1 R
=joj LP (Y >B,"(s)2k-jIT=35)P_ (“(t-s)=j)dt d°_ (T <s)
® j=0 %o X “n
k-1 . -
=j°5 L P (Y >B, "(s)2k-jlT=s)Lf P (“(t) =j)dtidP_ (T ss). (2.14)
' X U oX X
j=0 70 0 n

It is easily scen that

0

f;hxo("(t) =j)dt = f;(Pxo(Tj b1 B - P (7> t)ide
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c ’r =‘—* (T

T, -5 T.=7 T =(p) .
Jel Txgi fx e 153 = [P (xp, dIET),

o
where p"(xo, A) =P(Y_eAlY)=x). From (2.8) it follows that

n . . .
Liu(dx)L:P (x, dv)EyT1= fcu(dx)Ey1l= u(xO)LXOT (the last equality can
be found in Cinlar (1975)).

Therefore, u(xO)Ex (T.

U5 .1 -13) Sp(xO)Ex T, and we once again find that

0

Therefore, from (2.14) we have that

TSPXOU My ey - k117 B2 N(8) 2k, 0.2N(t) - (1) <k)dt

k

*

<(E, T | f‘gpx (Y > B, ¥(s)2jIT=5s)dF T <s)

0 j=1° %0 0

k *

=(E, T ) P, (Y >B, “(T) 2j)

o =170
S(E_T) JP.(MT)2j)=(C. T)L_ ~ <=, (2.15)

XO j=1 xO XO xO

Again by the dominated convergence theorem, for all e> 0, there is a

B> 0 wvhere

e

C, T TP (X>2, ¥T)2j) <e.
) =1 %o

(
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From (2.15) it then follews that for ail k> 0, :f
, ;
L4
X : (e - s
fc‘;Pxo(l Wyeey -k 1> B> T(8) 2k, 0 <N(2) - ¥ (T) <k)dt <, A
) -
X and therefore (2.11) coupled with (2.12) and (2.15) completes the proof. [
Of course, it must be pointed out that should {(Xp, Zn)} have a
< point of regeneration the convergence of {X(t)}, Z(t)} follows directly i
A from the basic renewal theorem, and theorem 2.3 is unnecessary. This 'ﬂ
X situation is not the primary situation of intercst. But cven in this .
case, as will be shown, the theorer can lead to a more satisfying .
f answer to the limit behavior of {X(t), Z(t)} than the generally intrac- -
t1t le integral answer which results from the basic renewal theorem. =
The primary situation of interest is when {Xn, Zq} has no point of z
r regeneration, but has instecad the following two properties .
. r,
: :
1) Zn(x) 20 a.s., ¥n, Vx, .
(2.16)
2) if x2y, then Zn(x) ZZn(y) a.s..
In this case, we will chow that shculd {Xr’ Zn} converge in distribution,
the uni forn boundedness condition is satisfied “Y‘boundﬁh”A{Xn- Zn} hy
another chain {Xn, Vn} with 1 regeneration point. »
, THEOREM 2.5. If B <o, {Xn, Zn} -+ {X, Z}, and if proverty (2.10) is it
- valid, then =
- . * * :’-
: Lie POX(t) =1, Z(t) £y) = lim {x =i, Z_(0) sy}, -
T n-sec .

for all continuity points y.
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PROOE. If there is no regeneration noint, then from theorem 1.1 we know

that for some i,, and any x>0, there isan A>0, a P>A, an ¢>0, and an
Ly

m where
A = sup{D: %&g P(Xn= igs Zn(x)sl))z n},
(2.17)
= i Y 1 ] =1
P(Xm 1y AHM) >R, Xoo1%ige oo Xlxuo IXO ”Q >€.

Assume without loss of generality that A =9. We can then define two
nev Markov chains {(Xn, Wn)} and {Xn’ Vn}, where the transition probabilities

for {Xn, wn} aic given for arbitrary set C by

) = 1 W C ) ='.‘f~' =
P(X =1, W e Hn 159 Fqo 7Y

=1 4 =1 = i i 1 r 1=
P(X i, Zn eC lxn 1 =3 Zn -1 y) if i zi, or Cnlfo, Ri=g
s .~ - - Y i€ i<
- P(x“ iy Znebu 0, B3 lxn»} . Zn_1 y) ifi=3,, BeC (z.as)
0 if i=i0, Ccfn, R},

and those for {Xn, Vn} are piven by

P(X_ =i,V oeCIX _ =j, b =V

7 Y =1 7z = 1 i 1 i 27 =
[ P(Xn -1 4 eC ‘“n TR P y) if i %i, or Cni0, ED=¢

PIX =i - Cu0, R =7i. =v) if i=1i,, NeC 2.1¢
- ,(Xn i Zn eCu™n, R an q = Zn -1 v) if 1 i, e C (2.19)
1 ) if i =i0, (0, RY,
- AT S e L

R A Ser iy

LN Y T

'l‘ll
KNP



From the above definitions, we can sce that “n and Vn are mercly

versions of Z1 in which whencver Xn =1i_ and Zq <B, th¢ value of Zn is
‘Y_ 1

0
; immediately changed to B and 0 respectively, and then the process is
$
3 restarted.
3

: Clcarly, frorm (2.16) it follows that

\n(x) Szn(x) Shn(x) a.s..

Let us define

, - inf {n> 1: Xn= iO’ Zn <B},
S inf {n> 1: Xn= iy wn <N},
‘V=inf {n>1: .\In=i0, \'n <B}
From ginlar {(1975), ve nced only shouw that [(iq/ D)fw <= to have
{Xn, Wn} satisfying thecorem 2.4. The other coﬁdition fellows, since

E(i B)Nw<wimp1ies there is a stationary rrotahility wmeasurce o with
0)

u(io, P)> 0, in which case for T.=T
N

-1
ieJ
Should {Xn, Zn} be erredic this would follow immediately. since

L,. I P N -
E S I's 0 Y
(101 o \lnv ") z

tifortunately without a #-irreducihility
condition (for definiticn, sce Grey (1071)) . the converpence of {Xn, z

is not sufficient for ergedicitv. Jdowever, it is clear from (2.16)

that for any x <y, and fer x> B that

~ - . . e . . R P S
L . P LI St et A

. . -1 o,
Lo = Lu(t HY I ¥ . . T o=t .
[(10’ py Ty = Lvligs M) eI WIFG Ty =il B e <o,

}
n

AN

N -‘ --. -l » -
T T S N . L e s S s PN L IR e
DRI W ST W WU SPL WA W SR Y W WP VR W W W WP v W SR W LI L SO O T AT I S B S Y Y

et L,
PSR TV TSI
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E,. M o 2E .. |
(10: X) W (10, Y) Lj
(2.20)
E.. N o =E,. N
(10, xX)'w (10, x)'v
Thus, it is sufficient to show that for some x> B, E_. N, <®
(10’ x) v

Let us first establish that {xn, Vn} is ergodic. Since (iO, 0)
is a regeneration point, it follows from Tweedie (1975) that if

lim P(Xn =1
n>o

0 Vn==0fX0= i, V0= z)> 0 for some (i, z), then {Xn, Vn}

is ergodic. From (2.16) and (2.19) it is clear that

P(X =i, V =0IX

o’ Vi 0= 1s VO=z)2P(XI=1 Z SB[XO=1 Z.=12).

s 0’ n N 0

Therefore, we have {Xn, Vn} is ergodic since for all (i, z),

. o - g _
%32 P(Xn iy, 2, SBIXO i, Z0 z)> €.
From the ergodicity of {X_, V_}, it follows that E . N <
nn (10. 0) v
It can be shown that
)
E. . Moo= iP . (N, =1)
(10, 0)'v i=1 (10, 0) v
o
+P . ~No>rm) ¥ el (G, dxIN_>m)(r+E . N,
(~0’ 0) v jeJ 0 (10’ 0) v L) 1{ v
From (2.17) it follows thatE(iO, O)ﬁv <o implies that E(}O' x)xv <= for

p(™
1

almost all x in the non-empty support of 0(10, (B,w)|wv> m),
0)

Which in turn implies that E <o from (2.20).
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Since E(io’ B)Nw <w, we have that theorem 2.4 applies to {X , Wn}.

Therefore, for any e€> 0 there is a B> 0 where for all k> 0

lim P(jW,.

I> B) <e.
P ey -k

Since Zn(x) Swn(x) a.s., this in turn implies

1im P(lZ,

. |>B) <eg,
o () - k

> B) < 1im P(lWw,
k taco N(t) -

which from theorem 2.3 cerpletes the proof. [
In the next section, we will apply these results to several

storage models to determine the convergence behavior in continuous time.

3. APPLICATIONS

To illustrate the applications of the theorems in the previous
section we will examine the behavior of several storage models. The :}
following notation will be necessary. For any random variable Y definc
Iy
E (Y) by

E(Y)= § . E(YIX,=3)
T jed J 0

where 7 is the stationary measure of the chain {Xn}.

EXAMPLE 1.
Let {Un(i), n=0, 1, ...} be an i.i.d. sequence of real-valued

random variables, independent of (Xn} and of {Un(j)}, for j =i.

. . L N T e e Tes PR . W e T T e e e e,
e e N e e e e et T e e T T e e
e sl L PN, PP R VL PR, PR VI P U VP oy iy Ay S PR W W

b'
P,
s
b,
b
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Let quull <®, and let E U1 <(0. We then define our contents in storage
i ™

Zn(x) recursively by
Z,(x) =max(0, z _,(x}+U (X)),
and Zo(x) Zx.

Of course,
Z(t) = %‘(t)(x).

This model is based on an early model for dam theory proposed by
Moran (1954), which has shown itself to have diverse application (for
example, in waiting times for queueing theory). In the present form,
it has been examined by talagopal (1979), Puri (1978), Senturia and
Puri (1973, 1974), Puri and Woolford (1981), and Puri and Tollar (1985).
In its most general form, Puri and Woolford (1981) had shown it converged
in distribution when appropriatcly normalized when EWLH 20, and hypoth-
esized it should converge without normalization when Eﬁlu <0. This
was shown to be truc by Puri and Tollar (1985), who illustrated that
{Xn, Zn} must have a renewal point (io, 0), in which case renewal theory

directly yields for T=inf {t> T, X(t) =i0, Z(t) =0},

lim P(X(t)

tro

]

i, Z(t) e A) =

-1 .
[E(iO. O)T] f"(';p(in, 0)(X(t)=1, Z(t) e A, T> t)dP ) (T <t).

(io, 0
(3.1)
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Noting that -

Z (x) =max ( max ( Z U (%)), x+ ZU(X)). (3.2) %
1<jsn i=j+1 :

we see that %f
z, (0)= max 2 u, (x )). oy

-1g<n-1 1-0

Since E.U; <0, we have from Chung (1967) that ) U, (X)>-=, a.s., in 2
i=0 -

which case ; >
(Xgr 2) —> (g, swp( § U (X)) aus. =

-1<j =0

From theorem 1.1 this implies (Xn’ Zn) converges in distribution if

we also observe from (3.2) that

sup |Z (x) -2 (0)] <max(0, B+ XU (X{))+0 a.s..
Ixl<D i=1

Note that Zn(x) 20 a.s., and if x 2y, then Zn(x) 2Zn(y) a.s., As

such, we have the following theorem as a consequence of theorem 2.5.

THEOREM 3.1. If B<w, E U1 <0, then
R —— — m —_—

lim P(X(t) =i, Z(t) <y) —P(x =1, sup( Z U (x )) <y)
to -1<3 i=0

for all continuity points of y.

It should be observed that this form is substantially more satis-

fying than the integral form of (3.1) obtained by Puri and Tollar (1985).
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While this by no means allows us to actually compute the distribution

of the limit, Puri (1978) has found the Laplace transform of

*
sup( i Ui(xi)) for a two-state Markov chain {Xn}, which is a least a
0k<j i=1
step in characterizing the limit distribution.

EXAMPLE 1II.

Let {(Un(i), V,(i)),n=0, 1, ...} be an i.i.d. scquence of bivariate

real-valued random variables, independent of {Xn} and of {Un(j), Vn(j)}

for j =i.
We then define a proportional allocation scheme for our contents

in storage, Zn(x), recursively by

2, (=0 (X )2 SV (X)), (3.3)
and Zo(x) X,

and again Z(t) = %i(t)(x).

While this model has received no attention in the general frame-
work, it has proven to be of interest in the simpler case where we

define

Zn(x) = Un-Zn _ 1(x) + wn’

for {(Un, Wn)} an i.i.d. sequence (see, for example, Barnard , Schenton,

and Uppuluri (1967), Paulson and Uppuluri (1972), Vervaat (1979)).
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Of particular interest is the observation that the techniques for ﬁ
semi-Markov processes on arbitrary state spaces of Cinlar (1969), Athreya, "
»

McDonald and Ney (1978a,b) and others have little chance for success on o
this model, since there is no guarantee that the Markov chain {Xn, Zn(x)} }
is ¢-irreducible. As such, while one can show the Markov chain converges <
by a reversal argument, and therefore apply theorem 2.5, ergodicity of %
{Xn. Zn(X)} cannot be demonstrated, so the typical starting assumption of -
semi-Markov processes is missing. ?
We first establish a theorem on the convergence of {Xn, Zn(x)}. N
THEOREM 3.2.  If E £alU | <0, E (21|V )" <=, then -
I

rll-lvgl P(Xn= i, Zn(x) <y) = P(XO= i, Z<y), for all continuity points y where .:
L@ Lo i-1 ;f

Z= iZovi(xl)jlloui(xi) <®, a.s.. :

2
(W)

PROOF. From (3.3) it is easily seen that

0" .

. .
P )

. .
LI

n !2':1 n
Z (x)=x MU (X)+ JV.(X) T U.(X),
n i=1 1Y i=1 7 jmien "

3
so :::1
. n-1 nil -l <
Z (x)=x T U, (X,)+ V.(X.) T U, (X.). e
n i=o ' Y =0 s ) )
k k
Since &n| 1 Ui(xi)' = Z Kn!Ui(Xi)I, we have from Chung (1967) that
i=0 i=0

EﬂﬁnlUll <0, implies
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& 8 Tyt et

V'd

0Ui(xi)l <0, a.s.. (3.4)

)

=T
-
t5
-
(o)
B3
[ =1}

¥

i

"7 ¥

Therefore,

n
sup |2 (x) - zn(O)l =B 1 lui(xi)l-»o a.s.,
. Ix |<ht iel -

AT . "

et

so condition (1.4) is satisfied. Therefore, from theorem 1.1 we need

only examine Zn(O).

L
NN

From (3.4) we have for all e> 0, there is a §, 0<§<1, and an .
N where for n>N,

n-1 -
P(&nl T Ui(Xi)|> nens, Vn>N)-._,
i=0
so

n-1 -
: PO T U (X)) 1> 67, v >N <e, (5.5)
a i=0

AR R

Therefore,

P(Izm(o)'zn(0)|>€. ¥ m>n>N)

RN S
A p

(-] N i_l .
PO IV, (XD 11 T U (X)) > )
- i:n J'=O J J

@

sp(.g

v, (x) 16" "t e) v, (3.6) i
1

0

where the last inequality follows from (3.5) and from {Xn} having the ~

A
stationary distribution. NN
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For any x> 1,

D POV, (X 1> x) = §on T RCIVL () 1> x)
=0+ jestizo ?

= 1 o L PRIV, (G) 1> ilnx)
jeJ “i=0

‘3 nj(znx)-x(l..E(znlvl(j)l)*)
jeJ

=) s PV, 1)) <.
As such, by the Borel-Cantelli lemma, for any x> 1
.l i,
\ =
P(I/i(xi)|> x i.o.)=0,

o s
Therefore, for any x <& !, since 7 x'6t <,
i=0

w0 [}
> i i
I_ZOIVi(Xi)lé - z X6 | <», a.s.,

i i=0
o .
which implies that | IVi(Xi)IG1 <w, a.s..
i=0

As such, we find rom (3.6) that for & sufficiently large,

P(lim(O) -in(0)1> €.V >n>N) <e,

-~

~nd we have that Zn(O) converges almost surely to some random

variable Z, which cormpletes the proof. &
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To complete the analysis of Z(t), we once again appeal to the

results of the previous section.

THEOREM 3.3.  If R <=, E £alU | <0, E| (fznlvli)"w. then

* s .
lim P(X(t) =i, Z2(t) sy)==P(XC= i,z*sfy), for all continuity points y, where

) & )

* = * i'll *
Z = '2 V(X)) T U (X)) <=, aus..
i=0 =0

PROCF. While theorem 2.5 cannot be appealed to directly, clearly

n n n
IZn(X)l Swnoxl) z le.n lUi(Xi_)I+_Z v, (X1 IU‘(Xj)l,
i=1 i=1 j=i+1

where {Xn, FLCx1)} is also » “xlov chain.  Since EﬂtnlUll <0,
E.n(,cmvln*m, theorem 3.2 yields that (X, W (Ix|) — (X, ¥} in

distribution.
Also, property (2.16) is clearly satisfied for Wj([xl). Therefore, the

proof of theorem 2.5 is sufficient to establish that for any ¢> 0, and

all k> 0, there exists a B wheré

t:: P(lz,_.(t) AR Sii: P(i\‘v'.!(t) k2B <,

and therefere theorem 2.3 can be applied to complcte the proof. [
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4. CONCLUSION

In most cases when a storage nodel is defined on a Markov renewal
process, the convergence of c¢ven the discretc time version cannot be
determined from general Markov chain arguments. As such, some tech-
nique like reversing the process rust be used. Therefore, if the con-
ditions in section 2 are valid, wc essentially get the convergence of
the continuous time process for frce. Of course, it is clear that
conditions such as (1.4) and (2.16) can be extended directly to multiple
dimensions, and the results will remain valid. However, for more gceneral
spaces, the counterpart to (2.16) is not readily apparent to us at present.

Crucial to the usefulness of the results are <onditions to guarantee
the uniform boundedness of %q(t)- ke The technique of bounding (Xn, Zn(x))
by another Markov chain with a regeneration point seems very powerful.
The conditions given can clearly by generalized. For exampic, 1f it can
be shown for a measure % that 7 is invariant with respect to {Xn, Zn(x)},
then we need not have Zn(x)a() in (2.16) for the results to still be
truc. It should be noted that it seems that Zn(x)izo should bu unnce-
essary in (2.16) even under the presented conditions. However, we
have been unable to show that this is the case.

Certainly there must be methods other than the bounding arguments
used which could be considered in ostablishing the uniform boundedness
of ZN(L) T Such conditions wou;d be an area of major interest in
the arplicability of the present work. And of course, perhaps uniform

boundedness is not the only condition which will let a theorem like

theoren 2.3 be valid.
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Of major interest would be to eliminate thc underlying denumerable

state semi-Markov process that was so essential to the present work,
. and instead specify a rcversing technique for seri-ilarkov processes on

arbitrary state spaces with no suck structure. However, even if we
can specify a way to reverse thc Marhov chain, we have no corresponding
version of lemma 2.2 upon which to "build" the reversed process in
continuous timec. Therefore, at present, we sec no hope of this tech-
nique being generalizable in this direction. Except in some very
artificial scenarios, it seems that establishing tle equivalent of
lemma 2.2 is substantially more difficult than establishing the be-
havior of the process directly. However, it is certainly possible
that techniques different than those used here could make the method

applicable.
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